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Abstract

Time-dependent stochastic inversion (TDSI) was recently developed for acoustic travel-time
tomography of the atmosphere. This type of tomography allows reconstruction of temperature
and wind-velocity fields given the location of sound sources and receivers and the travel times
between all source–receiver pairs. The quality of reconstruction provided by TDSI depends on
the geometry of the transducer array. However, TDSI has not been studied for the geometry
with reciprocal sound transmission. This paper is focused on three aspects of TDSI. First, the
use of TDSI in reciprocal sound transmission arrays is studied in numerical and physical
experiments. Second, efficiency of time-dependent and ordinary stochastic inversion (SI)
algorithms is studied in numerical experiments. Third, a new model of noise in the input data
for TDSI is developed that accounts for systematic errors in transducer positions. It is shown
that (i) a separation of the travel times into temperature and wind-velocity components in
tomography with reciprocal transmission does not improve the reconstruction, (ii) TDSI yields
a better reconstruction than SI and (iii) the developed model of noise yields an accurate
reconstruction of turbulent fields and estimation of errors in the reconstruction.

Keywords: travel-time tomography, inverse problems, acoustic imaging, remote sensing,
tomography of the atmosphere, stochastic inversion

1. Introduction

Acoustic travel-time tomography of the atmosphere allows one
to reconstruct temperature and wind-velocity fields in a certain
plane or volume given the coordinates of sound sources and
receivers and travel times of sound propagation between all
source–receiver pairs [1–6]. In outdoor acoustic tomography
experiments [7], the number of sources and receivers has been
relatively small (less than 20) so that the number of measured
travel times has also been small. Therefore, one of the main
issues in acoustic tomography of the atmosphere, similarly to

5 Present address: Signature Physics Branch, US Army ERDC-CRREL, 72
Lyme Rd, Hanover, NH 03755-1290, USA.

analogous problems in other areas [8–10], is the formulation
of robust and accurate inverse algorithms for reconstruction
of the temperature and wind-velocity fields from a limited
amount of data (the travel times and transducers’ coordinates).

To address this issue, a time-dependent stochastic
inversion (TDSI) algorithm was recently developed for travel-
time tomography of the atmosphere [11–14]. The main idea of
TDSI is to measure the travel times repeatedly (i.e., at different
times) and to use all these measurements for reconstruction
of temperature and wind-velocity fluctuations at an arbitrary
moment of time. This can be accomplished by taking into
account temporal covariances of the fluctuations. TDSI takes
into account both spatial and temporal covariances and, hence,
is an improvement over the ordinary stochastic inverse (SI)

0957-0233/08/125501+12$30.00 1 © 2008 IOP Publishing Ltd Printed in the UK
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that accounts for spatial covariances only [1, 15]. For the
problem considered in this paper, significant correlations exist
in the atmospheric surface layer over time scales of tens of
seconds and spatial scales of tens to hundreds of meters. TDSI
might also be considered for tomographic applications on a
larger scale, such as global atmospheric tomography using
infrasound. In this case, it could take advantage of correlations
involving synoptic weather patterns, which have correlation
time scales of days and spatial scales of hundreds of kilometers.

The general idea of TDSI is successfully applied in other
areas. For example, a similar approach is used in satellite
altimetry of the ocean surface to interpolate measurements
along satellite tracks to other spatial and temporal points
[16–18]. In image processing, this approach is used to improve
the image quality from several blurred or noisy frames [19, 20].
A similar algorithm is used in medical tomography where
it is referred to as the vector Wiener filter [21]. TDSI is
also somewhat similar to the Kalman filter [22, 23] which is
applied in many areas including tomography [24–27]. The
distinction is that TDSI is not recursive (i.e., yields a closed-
form reconstruction), does not make assumptions regarding
stochastic variables that adopted in Kalman’s theory (e.g.,
does not require formulation of a problem in state-space terms
which could be a difficult task) and uses data obtained at
arbitrary times for the reconstruction of fluctuations at other
arbitrary time (in this paper, for example, the previous, current
and future measurements relative to the time of reconstruction
are used).

The question about what functions can be used to describe
spatial covariances of isotropic, homogeneous and statistically
stationary atmospheric turbulence, which is considered in this
paper, is well studied in the literature (e.g., [28–32]). The
spatial–temporal covariance functions can be obtained from
spatial ones with the use of frozen or locally frozen turbulence
hypotheses [11, 12, 28]. However, these functions may not
coincide with spatial–temporal covariance functions of actual
turbulence since (i) the theoretical and actual spatial functions
may differ, and (ii) the frozen or locally frozen hypotheses
may not describe actual turbulence adequately. As a result, the
TDSI algorithm may not yield more accurate reconstruction
than an ordinary stochastic inversion algorithm, which utilizes
only spatial covariance functions. The advantage of TDSI in
comparison with SI was demonstrated in [11] for numerically
created rigidly frozen turbulence. However, it has not been
shown that TDSI provides a more accurate reconstruction in
the case of realistic turbulence which may or may not be frozen.

The goals of the paper are threefold. First,
application of TDSI to acoustic tomography with reciprocal
sound transmissions is studied. Reciprocal transmission
tomographic arrays have been used successfully in underwater
and atmospheric tomography for many years [33–36]. There
are two advantages of such arrays. First, they allow one
to increase the number of measured travel times for a
given number of transducer stations since the total number
of sound sources and receivers increases. Second, they
allow one to separate the originally measured travel times
into two components: travel times due to temperature and
travel times due to velocity. This makes the contribution

of weaker fluctuations to the data apparent. Therefore, one
can solve two problems (one for the reconstruction of the
temperature field and another one for the reconstruction of
the wind-velocity field) more effectively than the original
problem, in which temperature and wind-velocity fields are
reconstructed simultaneously. However, such a separation
reduces the number of travel times for each of the fields
by a factor of two. Therefore, the analytical advantage
of independent field reconstruction may not lead to better
quality. For some algorithms, such an analytical separation
led to a better reconstruction (or was a presupposition of
some specific algorithms) [6, 36, 37]. However, it has
not been studied whether such an approach improves the
reconstruction with the use of stochastic algorithms. In this
paper, reciprocal transmission arrays are studied for time-
dependent and ordinary stochastic inversion algorithms.

The second goal of this paper is to verify that
TDSI yields a better reconstruction than SI for realistic
turbulence. For this purpose, time-dependent, horizontal
slices through temperature and wind-velocity fields from a
high-resolution large-eddy simulation (LES) of an unstably
stratified atmospheric boundary layer were used as a surrogate
atmosphere. The LES solves an approximate, filtered form
of the nonlinear fluid dynamic (Navier–Stokes) equations that
explicitly describes the large-scale structure of the flow. More
detailed information about the LES used in this paper can be
found in [38].

Finally, in this paper, a more complete model of noise in
the input data for SI and TDSI is developed. This model
assumes that the errors (noise) in the transducer positions
is systematic; i.e. it remains the same for measurements at
different times for a given ray path. Also, the errors in the
mean field reconstruction affect data corresponding to all travel
paths. These improvements result in a non-diagonal noise
matrix, in contrast to earlier publications [11–14].

All derivations are implemented for a two-dimensional
problem where all sources and receivers lie in one horizontal
plane, and two-dimensional temperature and wind-velocity
fields are subject to reconstruction. The derived results remain
valid for the three-dimensional case.

The paper is organized as follows. The separation of
travel times into temperature and wind-velocity travel times
is presented in section 2. The basic equations for the
reconstruction of temperature and wind-velocity fields are
given in section 3. The numerical experiment with the use
of LES fields is described in section 4. Then, application of
TDSI to real experimental data from a reciprocal transmission
array is demonstrated in section 5. Summary and conclusions
are presented in section 6.

2. Separation of travel times

In this section, it is shown how the temperature and wind-
velocity contributions to the travel times can be separated.
The linearized equation for travel times in two-dimensional
acoustic tomography of the atmosphere in the horizontal (x, y)

2
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plane is given by the following equation [11]:

t tr
i (t) = Li

c0(t)

(
1 − u0(t)six + v0(t)siy

c0(t)

)
− 1

c2
0(t)

∫
Li

dl

{
c0(t)

2T0(t)
T (r, t) + u(r, t)six + v(r, t)siy

}
,

(1)

where t tr
i is the travel time of a sound propagating along path

Li, i = 1, 2, . . . , I, I being the total number of travel paths
(if S is the number of sound sources and R is the number of
receivers, then I = SR), V0 = u0ex + v0ey is the vector of
wind velocity spatially averaged over a tomographic plane, ex

and ey are the basis vectors of a Cartesian coordinate system,
c0 and T0 are adiabatic sound speed and temperature averaged
over a tomographic plane, V = uex + vey and T are fields
of fluctuations, si = sixex + siyey is a unit vector in the
direction of the ith ray propagation, r = xex + yey is a spatial
vector and t is time. The integration is taken along path Li

which, in this approximation, is a straight line. The full fields
of temperature and wind velocity in the tomographic plane,
T̃ (r, t) and Ṽ(r, t), can be found as the sum of their spatial
mean values c0(t) and V0(t) and fluctuation fields T (r, t) and
V(r, t):

T̃ (r, t) = T0(t) + T (r, t), Ṽ(r, t) = V0(t) + V(r, t). (2)

The mean values c0 and T0 are connected by the following
relationship:

c2
0(t) = γRaT0(t), (3)

where γ = cp/cV ≈ 1.41 is the ratio of specific heats cp

and cV , and Ra is the gas constant for dry air. Note that T̃

is the acoustic virtual temperature which relates to ordinary
thermodynamic temperature Tth as T̃ = Tth(1 + 0.511C),

where C is the concentration of water in air [31]. Note that,
for small C,C ∼= q, where q is the specific air humidity. The
temporal variations of the mean fields could be significantly
greater than the magnitude of the fluctuations. For example, in
the field experiment described in [12], T0 varied from 15.9 to
16.4 ◦C, u0 from −0.3 to −1.3 m s−1, and v0 from −1.6 to
−2.1 m s−1 during 10 min while the corresponding standard
deviations of the fluctuations were σT = 0.27 ◦C and
σV = 0.28 m s−1.

The goal of acoustic travel-time tomography is to
reconstruct fields T0(t), V0(t), T (r, t) and V(r, t) given the
coordinates of sound sources and receivers (which determine
si) and travel times t tr

i (t) for all rays.
Note that there may exist such wind-velocity fields Ṽ

that are ‘invisible’ for travel-time tomography in the sense
that they do not contribute to the travel times t tr

i [34, 35].
To detect these fields some additional measurements, besides
travel times, are suggested [34]. In this paper, no additional
measurements are used for reconstruction of wind velocity
with the use of stochastic inversion algorithms. The results of
such a reconstruction are discussed in section 5.

A reciprocal ray setup provides the travel times for each
pair of rays simultaneously propagating in opposite directions.
This allows an analytical separation of the measured travel
times on two subsets: the travel times t tr

iT , which are affected

only by T̃ , and travel times t tr
iV , which are affected only

by Ṽ. Let n and k be indices for reciprocal rays: n =
1, 2, . . . , N, k = 1, 2, . . . , N, and N = I/2. Their lengths
are the same, Ln = Lk, but their directions are opposite:
sk = −sn. Taking the sum and difference of the measured
travel times t tr

n and t tr
k and using equation (1), one obtains

t tr
nT (t) = t tr

k (t) + t tr
n (t)

2
= Ln

c0(t)
− 1

2c0(t)T0(t)

∫
Ln

T (r, t) dl,

(4)

t tr
nV (t) = t tr

k (t) − t tr
n (t)

2

= Ln(u0(t)snx + v0(t)sny)

c2
0(t)

+
1

c2
0(t)

∫
Ln

dl(u(r, t)snx + v(r, t)sny). (5)

The advantage of equations (4) and (5) in comparison with
the original equation (1) is that they allow independent
reconstruction of temperature and wind-velocity fields.
However, the amount of data for such reconstruction is
two times less. Therefore, it is worthwhile comparing the
reconstructions based on equation (1) and on equations (4)
and (5).

3. Reconstruction of the mean fields

The reconstruction of mean fields u0(t), v0(t) and T0(t)

will be based on the same formalism that was utilized in
[11–13]. However, the direct application of the formalism,
developed in these references, is not possible since the starting
equations (i.e., equations (4) and (5)) differ from the original
one (equation (1)).

The first step is to neglect fluctuations in equations (4) and
(5). This results in omitting the integrals in these equations.
Physically, this means that one reconstructs the uniform fields
c0(t) and V0(t) which match in the best way the known travel
times t tr

nT (t) and t tr
nV (t). The value of T0 is calculated from c0

with the use of equation (3). The second step is to use travel
times at time t to reconstruct the mean fields at the same time
t. Then, time t is a parameter and will be omitted until the end
of this section. The fact that travel times depend on t will be
used in the following section in which fluctuations T (r, t) and
V(r, t) will be reconstructed by TDSI.

3.1. Reconstruction of mean temperature

After omitting the integral in equation (4), the equation for c0

can be rewritten in the following form:

c0 = dnT , (6)

where dnT = Ln

/
t tr
nT . The well-known least-squares solution

ĉ0 and the estimation of its standard deviation σ̂c0 for such a
problem are given by the following formulae [15]:

ĉ0 =
∑N

n=1 dnT

N
, (7)

3
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σ̂c0 =
√∑N

n=1 (dnT − ĉ0)
2

N(N − 1)
. (8)

The reconstruction of mean temperature T̂0 is obtained
from ĉ0 with the use of equation (3).

3.2. Reconstruction of mean wind velocity

Once the value of c0 is reconstructed, one can use equation (5)
to reconstruct the mean values of wind-velocity components.
Neglecting the fluctuations in equation (5), one can formulate
the problem in matrix notation as follows:

Gf = dV , (9)

where

G =

⎡⎢⎣ s1x s1y

...
...

sNx sNy

⎤⎥⎦ , (10)

f = [u0; v0], (11)

and

dV = c2
0

[
t tr
1V

/
L1; . . . ; t tr

NV

/
LN

]
. (12)

The semicolon between elements indicates that these elements
are arranged in a column so that f and dV are column vectors.
In equation (9), the matrix G and the vector dV are known,
while the vector f is subject to estimation. Usually, N > 2, and
the problem seems to be overdetermined since the number of
equations is greater than the number of unknowns. However,
the matrix G could be ill-conditioned due to an unfortunate
location of the transmitters and receivers. In this case, the
straightforward least-squares solution of equation (9), which
implies inversion of matrix (GT G), cannot be employed
accurately. Therefore, it is worthwhile using the pseudo-
inverse [39] matrix G−1

p , in terms of which the solution of
equation (9) is given by the following formula:

f̂ = G−1
p dV . (13)

If the G matrix is well conditioned (i.e., its rank equals 2),
then G−1

p coincides with the least-squares estimator: G−1
p =

(GT G)−1GT , and equation (13) yields the least-squares
solution of equation (9). If the G matrix is ill conditioned
(i.e., its inverse condition number equals or approaches
zero), then it corresponds to the situation when one of the
unknowns (u0 or v0) is overdetermined while the other is
underdetermined. In this case, G−1

p yields the least-squares
solution for the overdetermined unknown and the minimal
second norm solution for the underdetermined one.

Similar to equation (8), the mean squared errors σ̂2
f =[

σ̂ 2
u0

, σ̂ 2
v0

]
of the solution f̂ can be estimated with the help of

the residual estimation [12]:

σ̂2
f = s2

dV
diag

(
G−1

p

[
G−1

p

]T )
, (14)

where s2
dV

is the estimated variance in the data dV :

s2
dV

= (dV − Ĝf)T (dV − Ĝf)

N − 2
. (15)

The errors σ̂2
f and σ̂ 2

c0
take into account the errors in travel

time measurements, transducer positions, and omitting the
integral term in equations (4) and (5). (Note that errors in
travel-time measurements refer to a specific technique of the
measurement; they are independent of the errors caused by the
transducer position uncertainty or omitting the integral.)

4. Reconstruction of the fluctuations

In this section, the fluctuations T (r, t) and V(r, t) will be
reconstructed with the use of the TDSI algorithm. The
equations of this algorithm for travel-time tomography of
the atmosphere were derived in [11]. Here, it is shown
how to apply TDSI to reciprocal transmission transducer
arrays, when equation (1) can be split into two equations,
equations (4) and (5). Application of TDSI to acoustic
tomography with reciprocal sound transmission is similar
to that for non-reciprocal sound propagation developed in
[11–14]. Therefore, it is worthwhile presenting a brief
overview of the main results obtained in these papers.

4.1. Time-dependent stochastic inversion

The starting equation for the reconstruction of the fluctuations
T (r, t) and V(r, t) is obtained from equation (1) where the
first term is calculated with the use of the reconstructed values
ĉ0(t), û0(t) and v̂0(t). The remaining part can be written in the
following form:

qi(t) = q0i (t) + ξi(t), (16)

where

qi(t) = Li(̂c0(t) − si · V̂0(t)) − ĉ2
0(t)t

tr
i (t), (17)

q0i (t) is noise-free data:

q0i (t) =
∫

Li

[
ĉ0(t)

2T̂0(t)
T (r, t) − si · V(r, t)

]
dl, (18)

and ξi(t) represents noise in qi(t) due to the errors in travel
time measurements, transducer position measurements and the
reconstruction of mean fields.

Suppose that the travel times ttr(t) = [
t tr
1 (t); . . . ; t tr

I (t)
]

were measured at times t1, t2, . . . , tQ. For each tk (k =
1, 2, . . . , Q), the mean fields are estimated similarly to the
technique described in section 3 (see also [11, 12, 14]), and
vectors q(tk) are formed. The key idea of TDSI is to use all Q
vectors q(tk) to reconstruct fluctuations T (r, t0) and V(r, t0)

at arbitrary time t0.
Let m(t0) be a vector of models which are subject to

reconstruction:

m(t0) = [T (r1, t0); . . . ; T (rJ , t0); u(r1, t0); . . . ; u(rJ , t0);
v(r1, t0); . . . ; v(rJ , t0)] , (19)

where J is the total number of spatial points within
a tomographic plane where the fluctuations should be
reconstructed and d is a vector of data for this reconstruction:

d = [q(t1); q(t2); . . . ; q(tQ)]. (20)

4



Meas. Sci. Technol. 19 (2008) 125501 S N Vecherin et al

Then, the optimal stochastic estimation m̂(t0) of models m(t0)

is given by the following equation [11]:

m̂(t0) = RmdR−1
dd d, (21)

where Rmd ≡ 〈mdT 〉 and Rdd ≡ 〈ddT 〉 are model-data
and data covariance matrices (the angular brackets 〈〉 denote
the mathematical expectation). The estimation m̂(t0) given
by equation (21) minimizes the expected squared errors

〈
ε2
j

〉
(j = 1, . . . , J ) for each spatial point of the reconstruction
[11, 15]:

〈
ε2
j

〉 = 〈(mj − m̂j )
2〉.

The elements of Rmd and Rdd matrices are calculated
with the use of spatial–temporal covariance functions of
temperature and wind-velocity fluctuations BT T (r′, t ′; r′′, t ′′)
and Bij (r

′, t ′; r′′, t ′′) (here, i and j indices indicate two
components of wind-velocity fluctuations V(r, t)). Formulae
for the calculation of the elements of noise-free matrices
Rmd0 and Rd0d0 are given by equations (18)–(21) from [11].
For convenience, these formulae are presented in appendix
A. Matrices Rmd and Rdd are obtained from Rmd0 and
Rd0d0 by taking into account noise in the input data, as
shown in appendix A. To find analytical formulae for the
spatial–temporal covariance functions BT T (r′, t ′; r′′, t ′′) and
Bij (r

′, t ′; r′′, t ′′), the hypothesis of frozen or locally frozen
turbulence can be used [11–13, 28, 29]. These formulae can
be found in appendix B.

The mean squared errors of m̂(t0), which are the errors of
the reconstruction of m(t0), are given by the diagonal elements
of the error covariance matrix Rεε [11]:

Rεε = Rmm − RmdR−1
dd RT

md, (22)

where Rmm ≡ 〈m(t0)m
T (t0)〉 is the model covariance matrix.

4.2. Error analysis in the data for TDSI

In this subsection, the covariance matrix of noise in the input
data for TDSI, Rξξ , is calculated. Knowledge about noise
in the input data is essential for TDSI since it appears in the
Rdd matrix, as shown in appendix A. The elements of the
Rξξ matrix are given by 〈ξi(t)ξi ′(t

′)〉. To find these elements,
one can take variations of equation (17) for different rays i
and i ′ at different times t and t ′, multiply them, and take
the mathematical expectation. Taking into account that for
straight rays Lisix = (xRi − xT i) and Lisiy = (yRi − yT i),

where (xRi, yRi) and (xT i, yT i) are the coordinates of a receiver
and a transmitter of the ith ray, correspondingly, one has:

ξi(t) = δqi(t) = Liδ̂c0(t) + ĉ0(t)δLi − û0(t)(δxRi − δxT i)

− v̂0(t)(δyRi − δyT i) − (xRi − xT i)δû0(t)

− (yRi − yT i)δ̂v0(t) − ĉ2
0(t)δt

tr
i (t) − 2̂c0(t)t

tr
i (t)δ̂c0(t).

(23)

A similar equation can be written for a different path i ′ at
a different time t ′. Since L2

i = (xRi − xT i)
2 + (yRi − yT i)

2 ,

then:

δLi = (xRi − xT i) (δxRi − δxT i) + (yRi − yT i) (δyRi − δyT i)

Ln

= six(δxRi − δxT i) + siy(δyRi − δyT i). (24)

Taking into account that ĉ0t
tr
i ∼ Li, many of the cross-

correlations equal zero, and neglecting the terms of order
(V̂0/̂c0)

2, one has

〈ξi(t)ξi ′(t
′)〉 ≈ 2σ 2

r (̂c0(t )̂c0(t
′) − [̂c0(t )̂u0(t

′) + ĉ0(t
′)̂u0(t)]six

− [̂c0(t )̂v0(t
′) + ĉ0(t

′)̂v0(t)]siy)δii ′

+ LiLi ′
(
σ̂ 2

c0
+ sixsi ′xσ̂

2
u0

+ siysi ′yσ̂
2
v0

)
δtt ′ + ĉ4

0(t)σ
2
t δii ′δtt ′ ,

(25)

where σ 2
r is the variance of the errors in transducer positions(

σ 2
r = 〈(δxRi)

2〉 = 〈(δxT i)
2〉 = 〈(δyRi)

2〉 = 〈(δyT i)
2〉),

σ̂ 2
c0
, σ̂ 2

u0
, and σ̂ 2

v0
are variances of errors in the reconstruction

of c0, u0, and v0, correspondingly (see section 3 and similar
formulae in [11, 12]), σ 2

t is the variance of errors in the travel
time measurements, and δii ′ and δtt ′ are Kronecker’s delta
symbols. While deriving equation (25), it is assumed that
uncertainties in the transducer positions are systematic in the
sense that they do not change with time for any given path.
As a result, the noise for the same paths is correlated for data
measured at different times t and t ′ (the first term in equation
(25)). Also, the errors in the reconstruction of mean fields
at a given time t affect all data measured at this time (the
second term in equation (25)). These two features result in
the non-diagonal noise matrix Rξξ which should be added to
the noise-free data covariance matrix Rd0d0 (see appendix A).
Finally, in the particular case t = t ′ and i = i ′, equation (25)
yields more accurate estimation of the variance σ 2

ξi
than that

presented in [12].

4.3. TDSI for reciprocal arrays

The starting equations for the reconstruction of temperature
and wind-velocity fluctuations are derived from equations (4)
and (5):

qnT (t) = q0nT (t) + ξnT (t), qnV (t) = q0nV (t) + ξnV (t), (26)

where qnT and qnV are calculated with the use of the
reconstructed mean values as described in section 3:

qnT (t) = Ln̂c0(t) − ĉ2
0(t)t

tr
nT (t), (27)

qnV (t) = ĉ2
0(t)t

tr
nV (t) − Ln(̂u0snx + v̂0sny), (28)

the noise-free data q0nT and q0nV are given by the following
expressions:

q0nT (t) =
∫

Ln

[
ĉ0(t)

2T̂0(t)
T (r, t)

]
dl, (29)

q0nV (t) =
∫

Ln

(u(r, t)snx + v(r, t)sny) dl, (30)

and ξnT and ξnV represent the noise in the data due to the errors
in measurements of travel times, positions of the transducers
and reconstructions of the mean fields. The variances of these
noises can be calculated similarly to the derivation shown in
the previous subsection, but the analysis should be based on
equations (27) and (28) instead of equation (17):

〈ξnT (t)ξn′T (t ′)〉 ≈ 2σ 2
r ĉ0(t )̂c0(t

′)δnn′

+ LnLn′ σ̂ 2
c0
δtt ′ + 1

2 ĉ4
0(t)σ

2
t δnn′δtt ′ , (31)
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Figure 1. Tomographic arrays: (a) for the numerical experiment and (b) for the physical outdoor experiment.

〈ξnV (t)ξn′V (t ′)〉 ≈ 2σ 2
r (̂u0(t )̂u0(t

′) + v̂0(t )̂v0(t
′))δnn′ + LnLn′

× (
snxsn′xσ̂

2
u0

+ snysn′yσ̂
2
v0

)
δtt ′ + 1

2 ĉ4
0(t)σ

2
t δnn′δtt ′ , (32)

where indices n and n′ denote two reciprocal paths. Note that
the variance of t tr

nT (the last term in equation (32)) is one-half
of the variance of measured travel times. This is also true for
t tr
nV .

Comparing equation (18) with equations (29) and (30),
one concludes that the general TDSI algorithm can be used
for reconstruction of either the temperature or the wind-
velocity fields with few modifications. For the temperature
field T, one should use a different data vector dT =
[qT (t1); qT (t2); . . . ; qT (tQ)], where qT are given by equation
(27), set the wind-velocity fluctuations to zero (σV = 0 in
formulae (A.3) and (A.4) for the calculation of Rmd0 and
Rd0d0 matrices in appendix A) and use equation (31) instead of
equation (25) to calculate the error matrix, which is needed in
order to find the matrix Rdd. Correspondingly, to reconstruct
the field of wind-velocity fluctuationsV, one should use the
data vector dV = [qV (t1); qV (t2); . . . ; qV (tQ)], where qV are
given by equation (28), set σT = 0 in formulae (A.3) and
(A.4), and use equation (32) to calculate the noise.

5. Numerical experiment

In this section, a numerical two-dimensional tomography
experiment is described. The primary goal of this numerical
experiment is to study whether the analytical separation
of travel times in reciprocal transmission arrays, given
by equations (4) and (5), improves the reconstruction in
comparison with the general TDSI algorithm based on
equation (1). The secondary goal is to compare the
reconstruction quality of TDSI and ordinary SI algorithms
on non-frozen turbulence.

For these purposes, the original temperature and wind-
velocity LES fields were used. The particular simulation
analyzed here involves unstable atmospheric stratification.

Five time frames (Q = 5) of two-dimensional temperature
and wind-velocity fields were employed with a time interval of
4.6 s at height z = 13.75 m. The spatial resolution of LES was
4 m in the horizontal plane. More detailed information about
LES fields used in the numerical experiment described can be
found in [38]. Using these LES fields, the travel times were
calculated for each time frame in accordance with equation (1)
for the reciprocal transmission array shown in figure 1(a). The
array consisted of eight sound sources (S1, . . . , S8) and eight
receivers (R1, . . . , R8) arranged along the perimeter of a square
with an 80 m length side. (Note that a similar array is currently
under construction at the National Oceanic and Atmospheric
Administration, Boulder, CO.) The array provided 56 travel
times (eight sources × eight receivers − eight paths of zero
length) for each time frame (28 reciprocal travel paths). To
take into account the noise in travel-time measurements, the
normally distributed white noise with σt = 5 μs was added
to the calculated travel times (for each path at each time
frame). This magnitude of noise corresponds to 3% of
errors in the data for the reconstruction of fluctuations (see
equation (16)). Moreover, during the calculations of travel
times, the transducer positions were randomly distorted by
normally distributed white noise with σr = 0.01 m to represent
the uncertainty in the transducer positions. These random
deviations from the original locations remained the same for
all five time frames to imitate the systematic errors. The
objective of the experiment was to reconstruct the temperature
and wind-velocity fields at the third time frame (t0 = 3).

The reconstruction of mean fields has been implemented
for the separated travel times as described in section 3, and the
reconstruction based on the travel times without separation
is described in [11–13]. The true and reconstructed mean
fields are presented in table 1, where ‘modified alg.’ and
‘general alg.’ refer to the reconstruction with and without
travel-time separation, correspondingly. According to table 1,
the values of the mean fields reconstructed by both modified
and general algorithms are the same. The only difference is

6



Meas. Sci. Technol. 19 (2008) 125501 S N Vecherin et al

x (m)

y 
(m

)

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

oC

28.4

28.45

28.5

28.55

28.6

28.65

28.7

(a) 

x (m)

y 
(m

)

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

oC

28.4

28.45

28.5

28.55

28.6

28.65

28.7

(b) 

x (m)

y 
(m

)

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

oC

28.4

28.45

28.5

28.55

28.6

28.65

28.7

(c) 

x (m)

y 
(m

)

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40
m/s

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(d) 

x (m)

y 
(m

)

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40
m/s

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(e) 

x (m)

y 
(m

)

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40
m/s

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(f )

x (m)

y 
(m

)

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40
m/s

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
(g) 

x (m)

y 
(m

)

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40
m/s

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
(h) 

x (m)

y 
(m

)

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40
m/s

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
(i ) 

Figure 2. Original LES and reconstructed temperature and wind-velocity fields at frame 3 in the numerical experiment. (a), (d) and (g):
original fields of temperature and two components of wind velocity. (b), (e) and (h): fields reconstructed by TDSI. (c), (f ) and (i): fields
reconstructed by SI.

Table 1. Actual and reconstructed mean temperature and
wind-velocity fields.

Fields T0 (◦C) u0 (m s−1) v0 (m s−1)

True 28.55 0.80 1.82
General alg. 28.56 ± 0.07 0.80 ± 0.05 1.82 ± 0.05
Modified alg. 28.56 ± 0.01 0.80 ± 0.08 1.82 ± 0.08

in the estimated errors of the reconstruction. But these errors
are still of the same order. Another conclusion from table 1
is that the reconstruction of the mean fields is very accurate.
Comparing the true and reconstructed values, one can see that
the actual discrepancy is of order 0.01 ◦C for temperature and
less than 0.01 m s−1 for wind velocity.

The reconstruction of the fluctuations was implemented
by TDSI and SI algorithms with and without analytical
separation of travel times. For the TDSI, the data from all five
time frames were used to reconstruct the fields at time t0, while
SI utilizes the data measured at the same time frame t0. The

variances and correlation lengths of turbulence for stochastic
inversion algorithms were estimated from the original LES
fields: σT = 0.08 ◦C, σV = 0.38 m s−1 and lT = lV = 14 m.
Figure 2 shows the original and full fields T̃ , ũ, and ṽ

reconstructed without travel-time separation. The original
LES fields are presented in figures 2(a), (d) and (g). The fields
reconstructed by the TDSI algorithm are shown in figures 2(b),
(e) and (h). The reconstruction with the use of SI is presented
in figures 2(c), (f ) and (i). Comparing these figures, one
notes a remarkable improvement in the reconstruction done
by TDSI in comparison with that done by SI. In the case
of SI, the temperature field is reconstructed rather poorly.
Neither the shape of turbulent eddies nor their magnitude is
reconstructed sufficiently well (see figure 2(c)). In contrast,
the TDSI algorithm (figure 2(b)) captures both the shape and
the magnitude even though the smallest details are still omitted.
The SI algorithm reconstructs the wind-velocity components
better than the temperature field (see figures 2(f ) and (i)), but
still not as well as the TDSI algorithm (figures 2(e) and (h)).
For example, the shape of blue eddies in the u and v fields is
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Table 2. Actual and expected RMSE of the reconstruction by TDSI
and SI algorithms.

RMSE T̃ (◦C) ũ (m s−1) ṽ (m s−1)

TDSI General algorithm
Actual 0.05 0.233 0.215
Expected 0.08 0.235 0.208

Modified algorithm
Actual 0.05 0.226 0.209
Expected 0.05 0.233 0.207

SI General algorithm
Actual 0.07 0.313 0.286
Expected 0.10 0.330 0.267

Modified algorithm
Actual 0.08 0.307 0.284
Expected 0.08 0.326 0.266

not reconstructed correctly by SI while TDSI reconstructs it
rather well.

These observations are summarized in table 2, which
represents actual and expected root mean squared errors
(RMSE) for the general (without the separation of travel times)
and modified (with travel times being separated) algorithms
for the case of SI and TDSI. The actual RMSE is calculated
with the use of an actual discrepancy between the original and
reconstructed fields. The expected spatially averaged RMSE
of the full fields are calculated with the use of equations (8) and
(14) for the mean fields and equation (22) for the fluctuations.
Comparing the actual errors of the general and modified
algorithms (lines 1 and 3 for TDSI and lines 5 and 7 for SI
in table 2), one concludes that these algorithms yield almost
identical results. This means that the analytical separation of
the travel times does not improve the reconstruction quality
of the stochastic inversion algorithms. On the other hand, if
one compares the actual errors of TDSI and SI reconstructions
(lines 1 and 5 for the general algorithm and lines 3 and 7
for the modified one), then it is noticeable that TDSI always
outperforms SI. This is clearly seen in figure 2 as well. Finally,
the comparison of the actual and expected errors for the
same algorithms reveals that the technique used for the error
estimation yields accurate and reliable results.

It is interesting to point out that the ‘invisible’ wind-
velocity fields, which are mentioned in section 2 and [34, 35],
did not introduce significant errors in the reconstruction. The
actual RMSE are small and in a good agreement with the
expected RMSE. Two explanations are plausible. First, these
‘invisible’ fields were not reconstructed but they were much
weaker than ‘visible’ ones, which were reconstructed from
travel times, so that they could not distort the reconstructed
fields significantly (within the actual RMSE of reconstruction).
This point can be supported by the following reasoning. The
use of Taylor’s or locally frozen turbulence hypotheses in
TDSI may be viewed as effective moving the transducer
array through motionless turbulence. This is equivalent to
having some transducers not only along the borders of the
tomographic area but also inside. The data obtained from
such an extended transducer array at several time frames
may reveal ‘invisible’ fields that exist longer than the time
interval between the frames. Since the time interval between

Table 3. Mean temperature and wind-velocity fields reconstructed
in the outdoor experiment.

Fields T0 (◦C) u0 (m s−1) v0 (m s−1)

General alg. 27.30 ± 0.06 −0.15 ± 0.05 0.27 ± 0.05
Modified alg. 27.30 ± 0.07 −0.15 ± 0.05 0.27 ± 0.05

Table 4. Expected RMSE of the reconstruction by TDSI algorithm
in the outdoor experiment.

RMSE T̃ (◦C) ũ (m s−1) ṽ (m s−1)

General alg. 0.08 0.26 0.25
Modified alg. 0.09 0.26 0.25

two consecutive measurements can be quite small (it is an
adjustable parameter in experiments), only really short-time
and weak ‘invisible’ fields may remain unrevealed. Second,
the ‘invisible’ fields may be reconstructed by stochastic
inversion algorithms (in full or partially). As shown in
section 4, these algorithms incorporate additional statistical
information about true fields. This information supplements
the travel-time measurements (in analogy to the additional
measurements proposed in [34]). Then, the ‘invisible’ fields
are reconstructed by stochastic inversion algorithms as a
complement to the ‘visible’ fields so that the total fields would
have specific correlation properties.

6. Physical outdoor experiment

This section describes a physical outdoor experiment with
a reciprocal transmission array carried out as a part
of the experiment STructure of turbulent transport under
INHOmogeneous surface conditions (STINHO) on June 17,
2002, in Lindenberg, Germany [7]. The array consisted of
eight sound sources and eight sound receivers arranged along
the perimeter of 250 m × 300 m as shown in figure 1(b). The
travel times were measured each minute. The order of errors
in the measurements was σt = 0.1 ms for the travel times
and σr = 0.01 m for the transducer positions. The fields at
1753 UTC (universal time coordinated) were the subject of
reconstruction.

The reconstruction was implemented in the same manner
as it was for the numerical experiment except that there
were no true fields and actual errors of the reconstruction.
However, the results of the numerical experiment suggest that
the reconstruction by TDSI is quite accurate, and the expected
errors yield an accurate estimation of the actual ones.

The reconstruction of mean fields by general and modified
algorithms is presented in table 3. Similar to the numerical
experiment, the reconstructed values and expected RMSE are
the same for the general and modified algorithms. As one
can see, the expected RMSE are 0.06 ◦C for temperature and
0.05 m s−1 for wind velocity. This accuracy is sufficient for
most meteorological applications.

For the TDSI algorithm, the variance of temperature
fluctuations was estimated with the use of an in situ sensor
located within a tomographic plane: σT = 0.06 ◦C. The
variance of the wind-velocity fluctuations was not measured
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Figure 3. Physical outdoor experiment. (a)–(c): temperature and two components of wind-velocity fields reconstructed by TDSI. The black
lines in (a) indicate the reconstructed wind. (d)–(f ): the expected errors of the reconstruction shown in (a)–(c), correspondingly.

in this experiment but was measured in similar outdoor
experiments [7, 12]. In the experiment described, the typical
value σV = 0.3 m s−1 had been used. The correlation lengths
of the fluctuations, which define a desirable characteristic size
of the reconstructed turbulent eddies, were lT = lV = 40 m.
The travel times from three consecutive frames were used
(1752, 1753 and 1754 UTC) to reconstruct the fluctuations
at 1753 UTC. The reconstructed full fields (the mean fields
plus the fluctuations) are presented in figures 3(a)–(c). The
black lines in figure 3(a) represent the reconstructed wind.
The expected RMSE of the reconstruction are shown in
figures 3(d)–(f ). Note that the errors are smaller than the
range of the fluctuations, which means that the temperature
and wind-velocity eddies which are seen in figures 3(a)–(c)
are reconstructed reliably.

7. Summary and conclusions

The main goal of this paper was to study whether reciprocal
transmission arrays improve tomographic reconstruction of
atmospheric temperature and wind-velocity fields when
implemented by stochastic inversion algorithms. It is known
that, for the linearized problem, reciprocal transmission
arrays allow one to separate the measured travel times into
two components, one of which depends on the temperature
field only while another depends on the wind-velocity field.
Also, it is well known that such an approach improves the
reconstructions by some other algorithms since it increases the

data/unknowns ratio. However, application of this technique
to stochastic inversion algorithms has not been studied. The
results obtained in this paper suggest that the modified and
general stochastic inversion algorithms (with and without
analytical separation of travel times, correspondingly) yield
practically identical reconstructions. This conclusion has been
verified for the TDSI and SI algorithms on the numerical and
real experimental data.

Another new contribution of this paper is an improved
model of noise in the data for reconstruction of the fluctuations
with the use of SI and TDSI. The present formulation, unlike
previous ones, accounts for systematic noise in the transducer
positions, which better corresponds to a real experiment. As
a result, the covariance matrix of noise is no longer diagonal.
This extension provides more accurate reconstruction (and
estimation of the errors in reconstruction) than previously.

Finally, the TDSI algorithm has been tested for the first
time on the original LES fields which were not frozen. The
TDSI algorithm accounts for the correlation of the temperature
and wind-velocity fields not only in space but also in time.
To find the spatial–temporal covariance functions of the
fluctuations, a hypothesis of locally frozen turbulence was
utilized. Since this hypothesis makes certain assumptions
about turbulence which may not occur in real turbulence, the
TDSI algorithm might not result in a better reconstruction
than the ordinary SI algorithm, which is free from these
assumptions. The numerical results obtained in this paper
(figure 2 and table 2) show that the TDSI reconstruction, which
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utilizes the locally frozen turbulence hypothesis [12, 28] based
on Gaussian spatial covariance functions, is remarkably better
than the SI reconstruction despite the facts that the LES fields
being reconstructed did not actually have a Gaussian spatial
covariance and may not exactly satisfy the assumptions of this
hypothesis.
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Appendix A. Elements of matrices Rmd and Rdd

In this appendix, formulae for Rdd and Rmd matrices are
presented.

The data vector d, given by equation (20), contains noise
due to errors in the travel-time measurements, transducer
positions and the reconstructed mean fields. Therefore, the
data vector d can be presented as d = d0 + �d, where
d0 = [q0(t1); q0(t2); . . . ; q0(tQ)] is a noise-free data vector,
whose elements are given by equation (18), and �d =
[ξ(t1); ξ(t2); . . . ; ξ(tQ)] is a vector of uncertainties with zero
mathematical expectation: 〈�d〉 = 0. Assuming that �d is
independent of m and d0, one has

Rmd = 〈mdT 〉 = 〈
mdT

0

〉
+ 〈m〉〈�dT 〉 = 〈

mdT
0

〉
, (A.1)

Rdd = 〈ddT 〉 = 〈
d0dT

0

〉
+ 〈�d�dT 〉. (A.2)

As one can see, noise in the data does not affect the model-data
noise-free covariance matrix (Rmd0 = Rmd) but changes the
data-data noise-free matrix Rd0d0 . Namely, one should know
the noise covariance matrix Rξξ = 〈�d�dT 〉. The elements
of this matrix are calculated in section 4.2.

To calculate the elements of noise-free matrices
〈
mdT

0

〉
and

〈
d0dT

0

〉
in equations (A.1) and (A.2), one should take into

account equation (18):

〈mj(t0)q0i (tk)〉 =
∫

Li

dl

{
ĉ0(tk)

2T̂0(tk)
〈mj(t0)T (r, tk)〉

+ 〈mj(t0)u(r, tk)〉six + 〈mj(t0)v(r, tk)〉siy

}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫
Li

dl
[

ĉ0(tk)

2T̂0(tk)
BT T (rj , t0; r, tk)

]
, if 1 � j � J,∫

Li
dl[Buu(rj−J , t0; r, tk)six + Buv(rj−J , t0; r, tk)siy],

if J + 1 � j � 2J,∫
Li

dl[Bvu(rj−2J , t0; r, tk)six + Bvv(rj−2J , t0; r, tk)siy],

if 2J + 1 � j � 3J,

(A.3)

where i = 1, 2, . . . , I, j = 1, 2, . . . , 3J, k = 1, 2, . . . ,Q,

r ∈ Li, BT T , Buu, Bvv and Buv are the spatial–temporal
covariance functions of the corresponding fields labeled by
the subscripts, and the rj are the spatial points within the
tomographic plane at which the fields are being reconstructed;
these points remain fixed during the integration.

Similarly, an expression for the covariance matrix
〈
d0dT

0

〉
between the noise-free data at time tn and time tk can be
calculated:

〈q0i (tn)q0p(tk)〉 =
∫

Li

dl

∫
Lp

dl′
{

ĉ0(tk )̂c0(tn)

4T̂0(tk)T̂0(tn)
BT T (r, tn; r′, tk)

+ Buu(r, tn; r′, tk)sixspx + Bvv(r, tn; r′, tk)siyspy

+ Buv(r, tn; r′, tk)sixspy + Bvu(r, tn; r′, tk)siyspx

}
,

(A.4)

where i, p = 1, 2, . . . , I, n, k = 1, 2, . . . ,Q, r ∈ Li , and
r′ ∈ Lp. Note that Bvu(r, t1; r′, t2) = Buv(r

′, t2; r, t1), and
similarly for other fields. When deriving equations (A.3) and
(A.4), it is assumed that BT u = BT v ≡ 0.

Appendix B. Spatial–temporal covariance functions

In this appendix, analytical formulae for spatial–temporal
covariance functions of temperature and wind-velocity
fluctuations are presented. These formulae were derived with
the use of the locally frozen turbulence hypothesis [12, 28]
which is a generalization of the widely used rigidly frozen
turbulence hypothesis (Taylor’s hypothesis). In the latter it is
assumed that each point of a turbulent eddy is advected with a
constant velocity. As a result, the eddy remains ‘frozen’ as it
moves. In contrast, in the locally frozen turbulence hypothesis,
it is assumed that each point of the eddy can move with its own
velocity. Therefore, the turbulence is no longer ‘frozen’ since
turbulent eddies can arbitrarily change their shape. If the wind
velocity was constant, the locally frozen turbulence hypothesis
coincides with Taylor’s hypothesis.

For the two-dimensional case, the formulae for the
spatial–temporal covariance functions of temperature and
wind-velocity fluctuations at points r′ and r′′ and times t ′ and
t ′′ take the following form [12]:

BT T (ρ,τ ) = σ̃ 2
T exp

[
− (ρ − V0(t

′)τ )2

l̃2
T

]
, (B.1)

Buu(ρ,τ ) = σ̃ 2
V exp

[
− (ρ − V0(t

′)τ )2

l̃2
V

]
×

(
1 − (ρy − v0(t

′)τ )2

l̃2
V

)
, (B.2)

Buv(ρ,τ ) = σ̃ 2
V exp

[
− (ρ − V0(t

′)τ )2

l̃2
V

]
× (ρx − u0(t

′)τ )(ρy − v0(t
′)τ )

l̃2
V

, (B.3)

where ρ = r′′−r′, τ = t ′′ − t ′, V0 is a spatially averaged wind
velocity with components (u0, v0), and the effective variances

10
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σ̃ 2
T and σ̃ 2

V , and the squares of correlation lengths l̃2
T and l̃2

V are
given by

σ̃ 2
T = σ 2

T[
1 + 2

(
σV τ

lT

)2]3/2 , l̃2
T = l2

T + 2σ 2
V τ 2, (B.4)

σ̃ 2
V = σ 2

V[
1 + 2

(
σV τ

lV

)2]3/2 , l̃2
V = l2

V + 2σ 2
V τ 2. (B.5)

Here, σT , σV , lT and lV are variances and correlation lengths
of the fluctuations at the same time (τ = 0). Formulae for Buv

and Bvv are symmetric to those given by equations (B.2) and
(B.3). Note that the space variations of the full wind velocity
field Ṽ(r, t) in the locally frozen turbulence hypothesis are
reflected in formulae (B.1)–(B.5) through σV .

In the limiting case σV τ/ min{lV , lT } → 0 and time-
independent V0, these formulae yield the results for rigidly
frozen turbulence [11]. It follows from equations (B.1)–
(B.5) that the dependence of the spatial–temporal covariance
functions on τ in the locally frozen turbulence hypothesis
is manifested in three effects: the spatial arguments of the
covariance functions are shifted by the vector V0(t

′)τ , the
effective variances of the fluctuations σ̃ 2

T and σ̃ 2
V decrease,

and the effective correlation lengths l̃T and l̃V increase as τ

increases.
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